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ABSTRACT— Ternary Content-Addressable Memories (TCAMs) are becoming popular for designing high-throughput 

forwarding engines on routers. They are fast, cost-effective and simple to manage. However, a major drawback of TCAMs is 

their large power consumption. This paper presents architectures and algorithms for making TCAM-based routing table more 

power efficient. The proposed architecture and algorithms are simple to implement, use commodity TCAMs, and provide worst-

case power consumption guarantees (independent of routing table contents). The most existing TCAM-based forwarding engines 

involve shifting TCAM entries when the forwarding table is updated, typically incurring a lengthy update duration. And also 

proposed a TCAM-based longest prefix forwarding engine with fast updating. The key idea behind the design is to maintain the 

forwarding table in a TCAM according to the Minimum Independent Prefix Set.  

Key words: TCAM, Delay, Network algorithm, memory architecture, bit selection, prefixes. 
 

I. INTRODUCTION 

Ternary Content Addressable Memories 

(TCAMs) are fully associative memories that allow a 

―don’t care‖ state to be stored in each memory cell in 

addition to 0s and 1s. This feature makes them 

particularly attractive for packet classification and route 

lookup applications which require longest prefix 

matches. When a destination address is presented to the 

TCAM, each TCAM entry is looked up in parallel, and 

the longest prefix that matches the address is returned. 

Thus, a single TCAM access is sufficient to perform a 

route lookup operation. In contrast, conventional ASIC-

based designs that use tries may require multiple 

memory accesses for a single route lookup. Therefore, 

routing latencies for TCAM-based routing tables are 

significantly lower 

than ASIC-based tables. Moreover, TCAM-based tables 

are typically much easier to manage and update than 

tables implemented using tries. Despite these advantages, 

routing vendors have been slow in adopting TCAM 

devices in packet forwarding engines because of two 

main reasons. First, TCAM devices have traditionally 

been more expensive and less dense compared to 

conventional ASIC-based devices. However, both the 

density and the cost of TCAMs have dramatically 

improved in the past few years, making them a viable 

alternative to ASIC-based designs in high-speed core 

routers. The second reason is that of high power 

consumption. Current high-density TCAM devices 

consume as much as 12–15Watts each when all the 

entries are enabled for search. Moreover, a single line 

card may require multiple TCAMs to handle filtering and 

classification as well as IP lookup on large forwarding 

tables. This high power consumption number affects 

costs in two ways-first; it increases power supply and 

cooling costs that account for a significant portion of an 

ISP’s operational expenses [1]. Second, it reduces port 

density since higher power consumption implies that 

fewer ports can be packed into the same space (e.g., 

router rack) due to cooling constraints. Therefore, it is 

important to minimize the power budget for TCAM-

based forwarding engines to make them economically 

viable. In this paper, we focus on the problem of making 

TCAM-based forwarding engines more power efficient 

by exploiting commonly available TCAM features. 

Several TCAM vendors (e.g., [3]) now provide 

mechanisms for searching only a part of the TCAM 

device in order to reduce power consumption during a 

lookup operation. We take advantage of this feature to 

provide two different power efficient TCAM based 

architectures for IP lookup. Both of our architectures 

utilize a two stage lookup process. The basic idea in 

either case is to divide the TCAM device into multiple 

partitions (depending on the power budget). When a 

route lookup is performed, the results of the first stage 

lookup are used to selectively search only one of these 

partitions during the second stage lookup. The two 

architectures differ in the mechanism for performing the 
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first stage lookup. In the first architecture, we use a 

subset of the destination address bits to hash to a TCAM 

partition (the bit-selection architecture), allowing for a 

very simple hardware implementation. The selected bits 

are fixed based on the contents of the routing table. In 

the second architecture, a small trie (implemented using 

a separate, small TCAM) is used to map a prefix of the 

destination address to one of the TCAM partitions in the 

next stage (the trie-based architecture). This adds some 

design complexity, but we show that it results in 

significantly better worst-case power consumption. 

 

II. TCAMS FOR ADDRESS LOOKUPS 

 

A Ternary Content Addressable Memory 

(TCAM) is a fully associative memory that allows a 

―don’t care‖ state for each memory cell, in addition to a 

0 and a 1. A memory cell in a ―don’t care‖ state matches 

both 0s and 1s in the corresponding input bit. The 

contents of a TCAM can be searched in parallel and a 

matching entry, if it exists, can be found in a single cycle 

(using a single TCAM access). If multiple entries match 

the input, the entry with the lowest address in the TCAM 

is typically returned as the result. The characteristics 

described above make TCAMs an attractive technology 

for IP route lookup operations where the destination 

address of an incoming packet is matched with the 

longest matching prefix in a routing table database. 

TCAMs can be used to implement routing table lookups 

as follows. If the maximum prefix length is W, then each 

routing prefix of length       n (≤W) is stored in the 

TCAM with the rightmost W −n bits as ―don’t cares‖. 

For example, the IPv4 prefix 192.168.0.0/15 will have 

―don’t care‖ in the last 17 bit positions. To ensure that 

the longest prefix match is returned, the prefixes in the 

TCAM must be sorted in order of decreasing prefix 

length. The sorting requirement makes it difficult to 

update the routing table. However, recent work [9] has 

proposed innovative algorithms for performing TCAM 

updates simply and efficiently. As mentioned earlier, the 

two main disadvantages of using TCAMs have 

traditionally been the high cost to density ratio and the 

high power consumption. Recent developments in 

TCAM technology have effectively addressed the first 

issue is TCAM devices with high capacity (up to 

18Mbits) and search rates of over 100 Million 

lookups/second [3], [8] are now coming to market with 

costs that are competitive with alternative technologies. 

The power consumption issue still remains somewhat 

unresolved. The main component of power consumption 

in TCAMs is proportional to the number of searched 

entries. The growth trends in the routing tables in the 

Internet core [2] have prompted routing vendors to 

design routing engines capable of scaling up to 1 million 

entries. TCAM vendors today have started providing 

mechanisms that can reduce power consumption by 

selectively addressing smaller portions of the TCAM. 

Each portion (called a sub-table or database) is defined 

as a set of TCAM blocks. A TCAM block is a 

contiguous, fixed-sized chunk of TCAM entries, usually 

much smaller than the size of the entire TCAM. 

Currently, TCAMs typically support a small number of 

sub-tables (such as 8 sub-tables addressed by a 3-bit ID), 

but the same mechanism could be used to support more 

sub-tables. Typically, each sub-table is intended for use 

in a different lookup/classification application. In this 

paper, we exploit the mechanism described above to 

reduce power consumption for route lookup applications. 

Given that the power consumption of a TCAM is linearly 

proportional to the number of searched entries, we use 

this number as a measure of the power consumed. 

Clearly, if the TCAM is partitioned into K equal-sized 

sub-tables, it is possible to reduce the maximum number 

of entries searched per lookup operation to as low as 1/ K 

of the TCAM size. However, this raises three important 

issues. First, we need to partition the TCAM into sub-

tables. Second, given an input, we need to select the right 

partition and search it. Finally, for a given partitioning 

scheme, we need to compute the size of the largest 

partition over all possible routing tables, so that hardware 

designers can allocate a power budget.  

 

III. FORWARDING ENGINE ARCHITECTURE 

 

The system architecture of our proposed MIPS 

Forwarding Engine (MIPS-FE) is depicted in Fig.1. 

Besides TCAM and its associated SRAM used 

respectively to accommodate the forwarding prefixes and 

their corresponding next-hops, there are two other major 

components: data plane and control plane, in support of 

forwarding table lookups and updating. 

  

A. Data plane 

The data plane takes the IP header of a received 

packet and passes it to TCAM, where the MIPS 

forwarding table is searched, with the address of the 

matched entry delivered to SRAM for retrieving the 

proper next-hop field. Finally, SRAM returns the next-

hop result back to the data plane. 

B. Control plane 

 

The control plane translates a received update 

message into some update operations via an auxiliary 1-
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bit trie structure maintained therein and passes them to 

TCAM for incremental updates. 

 
Fig 1.System architeture of TCAM 

C. TCAM 

Although working with conventional 2-port 

TCAM, our design is described here under TCAM of 3 

ports (with two for lookups and one for 

updating/maintenance). A dedicated TCAM updating 

port prevents table maintenance from interrupting lookup 

operations. Besides, 3-port configuration allows the 

control plane to be separated from the data plane, 

operating independently without any performance 

penalty when carrying out MIPS table maintenance such 

as incremental updates and data compression.  

D. SRAM 

SRAM is used to accommodate next-hop 

information corresponding to each forwarding prefix in 

TCAM. It is indexed by the location of the matched 

prefix in TCAM and returns next-hop information kept 

in the entry back to the data plane as the search result. 

Most of these features are commonly supported by 

TCAM-based search engine products available in the 

market. 

1) In addition to an inbound data port from the data plane 

and an outbound address port to next-hop memory, 

TCAM is equipped with a third port operating with the 

control plane. That separate port is dedicated to TCAM 

maintenance, permitting table updates to proceed without 

interrupting or suspending the search path. 2) Each 

TCAM entry can be tagged with Access Control Status 

(ACS) that can be any one of ―invalid‖, ―valid‖, ―hit‖, or 

―updating‖. All empty and outdated entries are set to the 

―invalid‖ status. Invalid entries are not involved in the 

search operations (for saving power) but are allowed to 

be overwritten immediately. Accordingly, the deletion 

operation is nothing but setting a specified entry to 

―invalid‖. All ―valid‖ entries, if not disabled, are 

compared in parallel during search operation and allowed 

to be updated. When a prefix in a ―valid‖ entry is 

matched, the entry is set to ―hit‖, disallowing it to be 

deleted or updated until the address of its corresponding 

next-hop memory location is latched and then its status is 

reset to ―valid‖. This kind of hits is called “exact” hits. 

When an entry is under updating, it is in the ―updating‖ 

status. When an ―updating‖ entry is hit, its corresponding 

next-hop field is not returned until the update completes. 

This kind of hits is referred to as “suspended” hits.          

3) During a search operation, the search key (an IP 

address) is placed in a special register, named the 

Compare and Register (CR). When a “suspended” hit 

occurs, the key retains in CR until the updating operation 

finishes. When a new search starts, its key is loaded to 

CR. 4) If a hit happens, no matter an exact or a 

suspended hit, a Match Flag (MF) is asserted to 

announce that the data in CR is found in memory. The 

Match Flag is reset until the search operation completes, 

i.e., the address of its corresponding next-hop memory 

location is latched. 5) A Next Free Entry Register 

(NFER) is used to keep the address of a TCAM location 

that is available for accommodating a new prefix. 

Specifying NFER is simple because the absence of the 

order constraint in TCAM eliminates the need to 

rearrange TCAM entries after each deletion operation.  

 

IV. THE BIT SELECTION ARCHITECTURE 

 

In this section, we describe the bit selection 

architecture for TCAM based packet forwarding engines. 

The core idea here is to split the entire routing table 

stored in the TCAM device into multiple sub-tables or 

buckets, where each bucket is laid out over one or more 

TCAM blocks. Each route lookup is now a two-stage 

operation where a fixed set of bits in the input is used to 

hash to one of the buckets. The selected bucket is then 

searched in the second stage. The hashing is performed 

by some simple glue logic placed in front of the TCAM 

device (which we refer to as the data TCAM). We restrict 

the hash function here to be such that it simply uses the 

selected set of input bits (called the hashing bits) as an 

index to the appropriate TCAM bucket. This bound is 

dependent on the size of the routing table and is 

proportional to the maximum number of blocks searched 

for any lookup. We then describe some heuristics to 

efficiently split a given routing table into buckets and 

how to map these buckets onto TCAM blocks.  

A. Forwarding engine architecture 

The forwarding engine design for the bit 

selection architecture is based on a key observation made 

in a recent study [2] of routing tables in the Internet core. 

This study pointed out that a very small percentage of the 
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prefixes in the core routing tables (less than 2% in our 

datasets) are either very short (< 16 bits) or very long 

(>24 bits). We therefore developed an architecture where 

the very short and very long prefixes are grouped into the 

minimum possible number of TCAM blocks. These 

blocks are searched for every lookup. The remaining 

98% of the prefixes that are 16 to 24 bits long are 

partitioned into buckets, one of which is selected by 

hashing for every lookup. The bit-selection architecture 

is shown in Figure 2. The TCAM blocks containing the 

very short and very long prefixes are not shown 

explicitly. The bit-selection logic in front of the TCAM 

is a set of muxes that can be programmed to extract the 

hashing bits from the incoming packet header and use 

them to index to the appropriate TCAM bucket. The set 

of hashing bits can be changed over time by 

reprogramming the muxes. First, we only consider the 

set of 16 to 24 bit long prefixes (called the split set) for 

partitioning. Second, it is possible that the routing table 

will span multiple TCAM devices, which would then be 

attached in parallel to the bit selection logic. However, 

each lookup would still require searching a bucket in a 

single TCAM device. Third, we assume that the total 

number of buckets    K = 2
k
 is a power of 2. Then, the bit 

selection logic extracts a set of k hashing bits from the 

packet header and selects a prefix bucket. This bucket, 

along with 

 
Fig.2. Forwarding engine architecture for using bit selection to reduce 

power consumption. 

The 3 hashing bits here are selected from the 32- bit 

destination address by setting the appropriate 5-bit values 

for b0, b1 and b2. The TCAM blocks containing the very 

short and very long prefixes are then searched. The two 

main issues now are how to select these k hashing bits, 

and how to allocate the different buckets among the 

various TCAM blocks. The first issue leads to our final 

assumption is we restrict ourselves to choosing the 

hashing bits from the first 16 bits, which is the minimum 

length of a prefix in the split set. The ―best‖ hash 

function (that is, set of hashing bits) is the one that 

minimizes the size of the biggest resulting bucket. 

 

B. The Bit Selection Heuristics 

The bound on the worst case input helps 

designers to determine the power budget. Given such a 

power budget, and a routing table, it is sufficient to 

ensure that the set of selected hashing bits produces a 

split that does not exceed the power budget. We call such 

a split a satisfying split. Note that it is possible that for 

the given routing table, a different partitioning (with 

lower power consumption) exists but we only care about 

keeping the power consumption below the power budget. 

In this section, we describe three different heuristics for 

choosing the set of hashing bits. We then show how 

these heuristics can be combined to ensure that the power 

budget computed by Theorem. Our first heuristic is the 

simplest (the simple heuristic) and requires no 

computation. This is based on the following observation. 

For almost all the routing table traces that we have 

analyzed, the rightmost k bits from the first 16 bits 

provide a satisfying split. However, this may not be true 

for tables that we have not examined or for tables of the 

future. Therefore, better schemes may be required if 

these hashing bits do not yield a satisfying split. The 

second heuristic requires the most computation, it uses a 

brute force search to check all possible subsets of k bits 

from the first 16 bits and selects the first hashing set that 

satisfies the power budget. Obviously, this method is 

guaranteed to find a satisfying split. Since this method 

compares  possible sets of k bits, its running time is 

maximum for k = 8. Finally, the third heuristic is a 

greedy algorithm that falls between the brute force 

heuristic and the simple heuristic in terms of 

computation as well as accuracy. It may not find a 

satisfying split always, but has a higher chance of 

succeeding than the simple heuristic. To select k hashing 

bits, the greedy algorithm performs k iterations, selecting 

1 hashing bit per iteration. Thus, the number of buckets 

(partitions of the routing table) doubles in each iteration. 

The goal in each iteration is to select a bit that minimizes 

the size of the biggest bucket produced by the 2-way 

split in that iteration. We now outline a scheme that 

combines each of the three heuristics to minimize the 

running time of the bit-selection procedure. Let M be the 

lower bound on the worst-case size of the largest bucket 

and T be the size of the entire TCAM. In addition, let P 

be the power consumption of the TCAM when all the 

entries are searched. Then the worst-case power budget 

is given by Pb= (1+α).M/T.P provides a small additional 

margin for slack (say, 5%). It is possible to maintain a 

power budget of Pb using the following steps. 

1) Split the routing prefixes using the last k of their first 

16 bits. If this produces a satisfying split, stop.  
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2) Otherwise, apply the greedy heuristic to find a 

satisfying split using k hashing bits. If this produces a 

satisfying split, stop.  

3) Otherwise, apply the brute force heuristic to find a 

satisfying split using k hashing bits. We remind the 

reader that the algorithm described above must be 

applied whenever route updates change the prefix 

distribution in the routing table such that the size of the 

largest bucket exceeds M. For real tables, the expectation 

is that such recompilations will not be necessary very 

often.  

C. Experimental results 

In this subsection, we present experimental 

results of applying the bit selection heuristics described 

in above. We evaluated the heuristics with respect to two 

metrics—the running time of the heuristic, and the 

quality of the splits produced by the heuristics. For this 

purpose, we applied the heuristics to multiple real core 

routing tables,  

 
The above algorithm greedy algorithm for selecting k 

hashing bits for a satisfying split. B is the set of bits 

selected, and P is the set of all prefixes in the routing 

table. Here sb=j denotes the subset of prefixes in set s 

that have a value of j (j = 0 or 1) in bit position b and we 

present the results for 2 of those tables. 
TABLE I. The two core routing tables used to test the bit selection 

schemes. 
Site Location Date Table in Size 

rrc04 Geneva 11/01/2001 109,600 

oregon Oregon 05/01/2002 121,883 

 

Details of these routing tables are listed in Table I. The 

results of applying the algorithms to the other core 

routing tables were similar.  

Running Times: The running times for the brute 

force and the greedy heuristics are described. All the 

experiments were run on a 800 MHz PC and required 

less than 1MB of memory. We first consider the running 

time of the brute force heuristic. For the real routing 

tables, there were less than 12,000 unique combinations 

of the first 16 bits for the 16-24 bit prefixes. The running 

time for the brute force algorithm was less than 16 

seconds for selecting up to 10 hashing bits. To explore 

the worst case running times for 1M prefixes, we 

generated a synthetic table that has approximately 1 

million prefixes with 216 unique combinations of the 

first 16 bits. This table was constructed by randomly 

picking the (non-zero) number of prefixes that share each 

combination of the first 16 bits. In this case, the running 

time can go as high as 80 seconds for selecting 8 hashing 

bits. Looking at the numbers for the greedy heuristic, we 

find that for real tables, it can run in as low as 0.05 

seconds (up to 10 hashing bits) and takes about 0.22 

seconds for the worst case synthetic input. This is an 

order of magnitude faster than the brute force heuristic. 

However, if the routing updates do not require frequent 

reorganizations of the routing tables, the brute force 

method might also suffice. 

Quality of Splits: We now explore the nature of the splits 

produced by each of the three heuristics. Let N denote 

the number of 16-24 bit prefixes in the table, and cmax 

denote the maximum bucket size. The ratio N/ cmax are a 

measure of the quality (evenness) of the split produced 

by the hashing bits. In particular, it is the factor of 

reduction in the portion of the TCAM that needs to be 

searched. Figure 3 & 4 shows a plot of N/ cmax versus the 

number of hashing bits k. From the below figure,  

 
Fig.3. Running times of the brute force and greedy algorithms. 

 

 
Fig.4. Running times of the brute force and greedy algorithms. 

 

The brute force algorithm performs an exhaustive search 

to find the best bits to select, while the greedy algorithm 

may find a suboptimal set of bits. ―full‖ is the synthetic 

table, while rrc4 and oregon are real core routing tables. 
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Fig 5. Power reduction factor (= size of entire prefix table/size of 

largest bucket) plotted on a log scale, using the different algorithms. 

 ―brute‖ uses the brute force method, ―greedy‖ uses the 

greedy algorithm, while ―static‖ uses the last few 

consecutive bits out of the first 16 bits of a prefix. We 

see that the ratio N/Cmax for the brute force and greedy 

schemes is nearly 53 at k = 6; for the static scheme this 

ratio is around 49, while this ratio for the best possible 

split (a completely even split) would be 2
k
 = 64. The 

differences between the three bit selection heuristics 

widens as more hashing bits are used. Since the synthetic 

table was generated by selecting the number of prefixes 

for each combination of the first 16 bits uniformly at 

random, it is easier to find good hashing bits for it. 

Hence all the three bit selection schemes provide splits 

that are close to ideal for the synthetic table. In contrast, 

real tables are less uniform than the synthetic table 

yielding more uneven splits, and therefore, lower power 

reduction ratios. 

Laying out buckets on TCAM blocks: We now 

consider the problem of laying out the buckets 

(corresponding to a satisfying split) on the TCAM 

blocks. First, the blocks containing the very long and 

very short prefixes are placed in the TCAM at the 

beginning and the end, respectively. This ensures that the 

longest prefix is selected in the event of multiple 

matches. We now focus on the buckets containing the 

16-24 bit prefixes. Let the size of the largest bucket be 

Cmax, and let the size of each TCAM block be s. ideally, 

we would like at most [Cmax/s] blocks be too searched 

when any address is looked up. However, it is possible to 

show that for any TCAM with capacity N and block size 

s, there exists a possible split of N prefixes into buckets 

(of maximum size Cmax) such that every possible layout 

scheme will have to lay out at least one bucket over 

([Cmax/s+1]) TCAM blocks. Our scheme lays out the 

buckets sequentially in any order in the TCAM, ensuring 

that all the prefixes in one bucket are in contiguous 

locations. It is possible to show that for this scheme, each 

bucket of size c occupies no more than [c/s+1] TCAM 

blocks. Consequently, at most [Cmax/s + 1] TCAM blocks 

need to be searched during any lookup. Thus, our layout 

scheme is optimal in the sense that it matches the lower 

bound discussed in the previous paragraph. The actual 

power savings ratio will be lower than the metric N/Cmax 

plotted in Figure 5. This is because the bucket layout 

scheme may round up the number of searched blocks and 

the extra blocks containing the long and short prefixes 

need to be searched for every lookup. For example, 

consider the task of laying out a 512K-entry prefix table 

into a 512K-entry TCAM with 64 8K blocks. Suppose 

that the very short (< 16-bit) and very long (> 24-bit) 

prefixes fit into 2 blocks, while the biggest bucket 

contains 12K 16-24 bit prefixes. The metric N/cmax has 

the value 512K/12K = 42.67. However, our layout 

scheme guarantees that the maximum number of blocks 

searched during a lookup would be (_12K/8K+1)+2 = 5, 

which reduces power consumption by a factor of 64/5 = 

12.8. For a TCAM with a maximum power rating of 

15Watts, this results in a power budget of under 1.2 

Watts, which is in the same ballpark as the SRAM based 

ASIC designs [3].  

V. Conclusion 

The bit selection architecture provides a 

straightforward technique for reducing the power 

consumption of data TCAMs. In particular, the 

additional hardware required for bit extraction and 

hashing is a set of simple muxes and can be very cost 

effective. However, the technique has some drawbacks. 

First, the worst-case power consumption guaranteed by 

this method is fairly high. In practice (i.e., for real 

tables), we saw that our heuristics provide significantly 

lower power consumption. For example, for a table with 

N=1M prefixes, the worst-case analysis guarantees a 

power reduction ratio N/Cmax = 2.62 using 3 hashing bits 

(from Table I), while our experimental results indicate 

power reduction ratios over 7.5 (from Figure 5). 

However, for a hardware designer who allocates a power 

budget, the worst-case power requirement is required to 

provide a guaranteed-not-to-exceed power budget. Thus, 

for the bit selection architecture, the designer would be 

forced to design for much higher worst-case power 

consumption than will ever be seen in practice. Second, 

the method of bit-selection described here assumes that 

the bulk of the prefixes lie in the 16-24 bit range2. This 

assumption may not hold in the future. In particular, the 

number of long (> 24-bit) prefixes may increase rapidly. 
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