
ISSN (Print) : 2319-5940
ISSN (Online) : 2278-1021

 International Journal of Advanced Research in Computer and Communication Engineering

 Vol. 2, Issue 1, January 2013

Copyright to IJARCCE www.ijarcce.com 977

Power Efficient and Fast Updating Approach

for TCAM-Based Forward Engine
Mr. K. SURESH KUMAR

1
, Dr.Y. RAJASREE RAO

2
, Dr. K.MANJUNATHACHARI

3

1
Electronics & Communication Engineering, SSJ Engineering College, Hyderabad, India.

2
Electronics & Communication Engineering, SRIDEVI WOMEN’S Engineering College, Hyderabad, India.

3
Electronics & Communication Engineering, GITAM University, Hyderabad campus, India.

ABSTRACT— Ternary Content-Addressable Memories (TCAMs) are becoming popular for designing high-throughput

forwarding engines on routers. They are fast, cost-effective and simple to manage. However, a major drawback of TCAMs is

their large power consumption. This paper presents architectures and algorithms for making TCAM-based routing table more

power efficient. The proposed architecture and algorithms are simple to implement, use commodity TCAMs, and provide worst-

case power consumption guarantees (independent of routing table contents). The most existing TCAM-based forwarding engines

involve shifting TCAM entries when the forwarding table is updated, typically incurring a lengthy update duration. And also

proposed a TCAM-based longest prefix forwarding engine with fast updating. The key idea behind the design is to maintain the

forwarding table in a TCAM according to the Minimum Independent Prefix Set.

Key words: TCAM, Delay, Network algorithm, memory architecture, bit selection, prefixes.

I. INTRODUCTION

Ternary Content Addressable Memories

(TCAMs) are fully associative memories that allow a

―don’t care‖ state to be stored in each memory cell in

addition to 0s and 1s. This feature makes them

particularly attractive for packet classification and route

lookup applications which require longest prefix

matches. When a destination address is presented to the

TCAM, each TCAM entry is looked up in parallel, and

the longest prefix that matches the address is returned.

Thus, a single TCAM access is sufficient to perform a

route lookup operation. In contrast, conventional ASIC-

based designs that use tries may require multiple

memory accesses for a single route lookup. Therefore,

routing latencies for TCAM-based routing tables are

significantly lower

than ASIC-based tables. Moreover, TCAM-based tables

are typically much easier to manage and update than

tables implemented using tries. Despite these advantages,

routing vendors have been slow in adopting TCAM

devices in packet forwarding engines because of two

main reasons. First, TCAM devices have traditionally

been more expensive and less dense compared to

conventional ASIC-based devices. However, both the

density and the cost of TCAMs have dramatically

improved in the past few years, making them a viable

alternative to ASIC-based designs in high-speed core

routers. The second reason is that of high power

consumption. Current high-density TCAM devices

consume as much as 12–15Watts each when all the

entries are enabled for search. Moreover, a single line

card may require multiple TCAMs to handle filtering and

classification as well as IP lookup on large forwarding

tables. This high power consumption number affects

costs in two ways-first; it increases power supply and

cooling costs that account for a significant portion of an

ISP’s operational expenses [1]. Second, it reduces port

density since higher power consumption implies that

fewer ports can be packed into the same space (e.g.,

router rack) due to cooling constraints. Therefore, it is

important to minimize the power budget for TCAM-

based forwarding engines to make them economically

viable. In this paper, we focus on the problem of making

TCAM-based forwarding engines more power efficient

by exploiting commonly available TCAM features.

Several TCAM vendors (e.g., [3]) now provide

mechanisms for searching only a part of the TCAM

device in order to reduce power consumption during a

lookup operation. We take advantage of this feature to

provide two different power efficient TCAM based

architectures for IP lookup. Both of our architectures

utilize a two stage lookup process. The basic idea in

either case is to divide the TCAM device into multiple

partitions (depending on the power budget). When a

route lookup is performed, the results of the first stage

lookup are used to selectively search only one of these

partitions during the second stage lookup. The two

architectures differ in the mechanism for performing the

ISSN (Print) : 2319-5940
ISSN (Online) : 2278-1021

 International Journal of Advanced Research in Computer and Communication Engineering

 Vol. 2, Issue 1, January 2013

Copyright to IJARCCE www.ijarcce.com 978

first stage lookup. In the first architecture, we use a

subset of the destination address bits to hash to a TCAM

partition (the bit-selection architecture), allowing for a

very simple hardware implementation. The selected bits

are fixed based on the contents of the routing table. In

the second architecture, a small trie (implemented using

a separate, small TCAM) is used to map a prefix of the

destination address to one of the TCAM partitions in the

next stage (the trie-based architecture). This adds some

design complexity, but we show that it results in

significantly better worst-case power consumption.

II. TCAMS FOR ADDRESS LOOKUPS

A Ternary Content Addressable Memory

(TCAM) is a fully associative memory that allows a

―don’t care‖ state for each memory cell, in addition to a

0 and a 1. A memory cell in a ―don’t care‖ state matches

both 0s and 1s in the corresponding input bit. The

contents of a TCAM can be searched in parallel and a

matching entry, if it exists, can be found in a single cycle

(using a single TCAM access). If multiple entries match

the input, the entry with the lowest address in the TCAM

is typically returned as the result. The characteristics

described above make TCAMs an attractive technology

for IP route lookup operations where the destination

address of an incoming packet is matched with the

longest matching prefix in a routing table database.

TCAMs can be used to implement routing table lookups

as follows. If the maximum prefix length is W, then each

routing prefix of length n (≤W) is stored in the

TCAM with the rightmost W −n bits as ―don’t cares‖.

For example, the IPv4 prefix 192.168.0.0/15 will have

―don’t care‖ in the last 17 bit positions. To ensure that

the longest prefix match is returned, the prefixes in the

TCAM must be sorted in order of decreasing prefix

length. The sorting requirement makes it difficult to

update the routing table. However, recent work [9] has

proposed innovative algorithms for performing TCAM

updates simply and efficiently. As mentioned earlier, the

two main disadvantages of using TCAMs have

traditionally been the high cost to density ratio and the

high power consumption. Recent developments in

TCAM technology have effectively addressed the first

issue is TCAM devices with high capacity (up to

18Mbits) and search rates of over 100 Million

lookups/second [3], [8] are now coming to market with

costs that are competitive with alternative technologies.

The power consumption issue still remains somewhat

unresolved. The main component of power consumption

in TCAMs is proportional to the number of searched

entries. The growth trends in the routing tables in the

Internet core [2] have prompted routing vendors to

design routing engines capable of scaling up to 1 million

entries. TCAM vendors today have started providing

mechanisms that can reduce power consumption by

selectively addressing smaller portions of the TCAM.

Each portion (called a sub-table or database) is defined

as a set of TCAM blocks. A TCAM block is a

contiguous, fixed-sized chunk of TCAM entries, usually

much smaller than the size of the entire TCAM.

Currently, TCAMs typically support a small number of

sub-tables (such as 8 sub-tables addressed by a 3-bit ID),

but the same mechanism could be used to support more

sub-tables. Typically, each sub-table is intended for use

in a different lookup/classification application. In this

paper, we exploit the mechanism described above to

reduce power consumption for route lookup applications.

Given that the power consumption of a TCAM is linearly

proportional to the number of searched entries, we use

this number as a measure of the power consumed.

Clearly, if the TCAM is partitioned into K equal-sized

sub-tables, it is possible to reduce the maximum number

of entries searched per lookup operation to as low as 1/ K

of the TCAM size. However, this raises three important

issues. First, we need to partition the TCAM into sub-

tables. Second, given an input, we need to select the right

partition and search it. Finally, for a given partitioning

scheme, we need to compute the size of the largest

partition over all possible routing tables, so that hardware

designers can allocate a power budget.

III. FORWARDING ENGINE ARCHITECTURE

The system architecture of our proposed MIPS

Forwarding Engine (MIPS-FE) is depicted in Fig.1.

Besides TCAM and its associated SRAM used

respectively to accommodate the forwarding prefixes and

their corresponding next-hops, there are two other major

components: data plane and control plane, in support of

forwarding table lookups and updating.

A. Data plane

The data plane takes the IP header of a received

packet and passes it to TCAM, where the MIPS

forwarding table is searched, with the address of the

matched entry delivered to SRAM for retrieving the

proper next-hop field. Finally, SRAM returns the next-

hop result back to the data plane.

B. Control plane

The control plane translates a received update

message into some update operations via an auxiliary 1-

ISSN (Print) : 2319-5940
ISSN (Online) : 2278-1021

 International Journal of Advanced Research in Computer and Communication Engineering

 Vol. 2, Issue 1, January 2013

Copyright to IJARCCE www.ijarcce.com 979

bit trie structure maintained therein and passes them to

TCAM for incremental updates.

Fig 1.System architeture of TCAM

C. TCAM

Although working with conventional 2-port

TCAM, our design is described here under TCAM of 3

ports (with two for lookups and one for

updating/maintenance). A dedicated TCAM updating

port prevents table maintenance from interrupting lookup

operations. Besides, 3-port configuration allows the

control plane to be separated from the data plane,

operating independently without any performance

penalty when carrying out MIPS table maintenance such

as incremental updates and data compression.

D. SRAM

SRAM is used to accommodate next-hop

information corresponding to each forwarding prefix in

TCAM. It is indexed by the location of the matched

prefix in TCAM and returns next-hop information kept

in the entry back to the data plane as the search result.

Most of these features are commonly supported by

TCAM-based search engine products available in the

market.

1) In addition to an inbound data port from the data plane

and an outbound address port to next-hop memory,

TCAM is equipped with a third port operating with the

control plane. That separate port is dedicated to TCAM

maintenance, permitting table updates to proceed without

interrupting or suspending the search path. 2) Each

TCAM entry can be tagged with Access Control Status

(ACS) that can be any one of ―invalid‖, ―valid‖, ―hit‖, or

―updating‖. All empty and outdated entries are set to the

―invalid‖ status. Invalid entries are not involved in the

search operations (for saving power) but are allowed to

be overwritten immediately. Accordingly, the deletion

operation is nothing but setting a specified entry to

―invalid‖. All ―valid‖ entries, if not disabled, are

compared in parallel during search operation and allowed

to be updated. When a prefix in a ―valid‖ entry is

matched, the entry is set to ―hit‖, disallowing it to be

deleted or updated until the address of its corresponding

next-hop memory location is latched and then its status is

reset to ―valid‖. This kind of hits is called “exact” hits.

When an entry is under updating, it is in the ―updating‖

status. When an ―updating‖ entry is hit, its corresponding

next-hop field is not returned until the update completes.

This kind of hits is referred to as “suspended” hits.

3) During a search operation, the search key (an IP

address) is placed in a special register, named the

Compare and Register (CR). When a “suspended” hit

occurs, the key retains in CR until the updating operation

finishes. When a new search starts, its key is loaded to

CR. 4) If a hit happens, no matter an exact or a

suspended hit, a Match Flag (MF) is asserted to

announce that the data in CR is found in memory. The

Match Flag is reset until the search operation completes,

i.e., the address of its corresponding next-hop memory

location is latched. 5) A Next Free Entry Register

(NFER) is used to keep the address of a TCAM location

that is available for accommodating a new prefix.

Specifying NFER is simple because the absence of the

order constraint in TCAM eliminates the need to

rearrange TCAM entries after each deletion operation.

IV. THE BIT SELECTION ARCHITECTURE

In this section, we describe the bit selection

architecture for TCAM based packet forwarding engines.

The core idea here is to split the entire routing table

stored in the TCAM device into multiple sub-tables or

buckets, where each bucket is laid out over one or more

TCAM blocks. Each route lookup is now a two-stage

operation where a fixed set of bits in the input is used to

hash to one of the buckets. The selected bucket is then

searched in the second stage. The hashing is performed

by some simple glue logic placed in front of the TCAM

device (which we refer to as the data TCAM). We restrict

the hash function here to be such that it simply uses the

selected set of input bits (called the hashing bits) as an

index to the appropriate TCAM bucket. This bound is

dependent on the size of the routing table and is

proportional to the maximum number of blocks searched

for any lookup. We then describe some heuristics to

efficiently split a given routing table into buckets and

how to map these buckets onto TCAM blocks.

A. Forwarding engine architecture

The forwarding engine design for the bit

selection architecture is based on a key observation made

in a recent study [2] of routing tables in the Internet core.

This study pointed out that a very small percentage of the

ISSN (Print) : 2319-5940
ISSN (Online) : 2278-1021

 International Journal of Advanced Research in Computer and Communication Engineering

 Vol. 2, Issue 1, January 2013

Copyright to IJARCCE www.ijarcce.com 980

prefixes in the core routing tables (less than 2% in our

datasets) are either very short (< 16 bits) or very long

(>24 bits). We therefore developed an architecture where

the very short and very long prefixes are grouped into the

minimum possible number of TCAM blocks. These

blocks are searched for every lookup. The remaining

98% of the prefixes that are 16 to 24 bits long are

partitioned into buckets, one of which is selected by

hashing for every lookup. The bit-selection architecture

is shown in Figure 2. The TCAM blocks containing the

very short and very long prefixes are not shown

explicitly. The bit-selection logic in front of the TCAM

is a set of muxes that can be programmed to extract the

hashing bits from the incoming packet header and use

them to index to the appropriate TCAM bucket. The set

of hashing bits can be changed over time by

reprogramming the muxes. First, we only consider the

set of 16 to 24 bit long prefixes (called the split set) for

partitioning. Second, it is possible that the routing table

will span multiple TCAM devices, which would then be

attached in parallel to the bit selection logic. However,

each lookup would still require searching a bucket in a

single TCAM device. Third, we assume that the total

number of buckets K = 2
k
 is a power of 2. Then, the bit

selection logic extracts a set of k hashing bits from the

packet header and selects a prefix bucket. This bucket,

along with

Fig.2. Forwarding engine architecture for using bit selection to reduce

power consumption.

The 3 hashing bits here are selected from the 32- bit

destination address by setting the appropriate 5-bit values

for b0, b1 and b2. The TCAM blocks containing the very

short and very long prefixes are then searched. The two

main issues now are how to select these k hashing bits,

and how to allocate the different buckets among the

various TCAM blocks. The first issue leads to our final

assumption is we restrict ourselves to choosing the

hashing bits from the first 16 bits, which is the minimum

length of a prefix in the split set. The ―best‖ hash

function (that is, set of hashing bits) is the one that

minimizes the size of the biggest resulting bucket.

B. The Bit Selection Heuristics

The bound on the worst case input helps

designers to determine the power budget. Given such a

power budget, and a routing table, it is sufficient to

ensure that the set of selected hashing bits produces a

split that does not exceed the power budget. We call such

a split a satisfying split. Note that it is possible that for

the given routing table, a different partitioning (with

lower power consumption) exists but we only care about

keeping the power consumption below the power budget.

In this section, we describe three different heuristics for

choosing the set of hashing bits. We then show how

these heuristics can be combined to ensure that the power

budget computed by Theorem. Our first heuristic is the

simplest (the simple heuristic) and requires no

computation. This is based on the following observation.

For almost all the routing table traces that we have

analyzed, the rightmost k bits from the first 16 bits

provide a satisfying split. However, this may not be true

for tables that we have not examined or for tables of the

future. Therefore, better schemes may be required if

these hashing bits do not yield a satisfying split. The

second heuristic requires the most computation, it uses a

brute force search to check all possible subsets of k bits

from the first 16 bits and selects the first hashing set that

satisfies the power budget. Obviously, this method is

guaranteed to find a satisfying split. Since this method

compares possible sets of k bits, its running time is

maximum for k = 8. Finally, the third heuristic is a

greedy algorithm that falls between the brute force

heuristic and the simple heuristic in terms of

computation as well as accuracy. It may not find a

satisfying split always, but has a higher chance of

succeeding than the simple heuristic. To select k hashing

bits, the greedy algorithm performs k iterations, selecting

1 hashing bit per iteration. Thus, the number of buckets

(partitions of the routing table) doubles in each iteration.

The goal in each iteration is to select a bit that minimizes

the size of the biggest bucket produced by the 2-way

split in that iteration. We now outline a scheme that

combines each of the three heuristics to minimize the

running time of the bit-selection procedure. Let M be the

lower bound on the worst-case size of the largest bucket

and T be the size of the entire TCAM. In addition, let P

be the power consumption of the TCAM when all the

entries are searched. Then the worst-case power budget

is given by Pb= (1+α).M/T.P provides a small additional

margin for slack (say, 5%). It is possible to maintain a

power budget of Pb using the following steps.

1) Split the routing prefixes using the last k of their first

16 bits. If this produces a satisfying split, stop.

ISSN (Print) : 2319-5940
ISSN (Online) : 2278-1021

 International Journal of Advanced Research in Computer and Communication Engineering

 Vol. 2, Issue 1, January 2013

Copyright to IJARCCE www.ijarcce.com 981

2) Otherwise, apply the greedy heuristic to find a

satisfying split using k hashing bits. If this produces a

satisfying split, stop.

3) Otherwise, apply the brute force heuristic to find a

satisfying split using k hashing bits. We remind the

reader that the algorithm described above must be

applied whenever route updates change the prefix

distribution in the routing table such that the size of the

largest bucket exceeds M. For real tables, the expectation

is that such recompilations will not be necessary very

often.

C. Experimental results

In this subsection, we present experimental

results of applying the bit selection heuristics described

in above. We evaluated the heuristics with respect to two

metrics—the running time of the heuristic, and the

quality of the splits produced by the heuristics. For this

purpose, we applied the heuristics to multiple real core

routing tables,

The above algorithm greedy algorithm for selecting k

hashing bits for a satisfying split. B is the set of bits

selected, and P is the set of all prefixes in the routing

table. Here sb=j denotes the subset of prefixes in set s

that have a value of j (j = 0 or 1) in bit position b and we

present the results for 2 of those tables.
TABLE I. The two core routing tables used to test the bit selection

schemes.
Site Location Date Table in Size

rrc04 Geneva 11/01/2001 109,600

oregon Oregon 05/01/2002 121,883

Details of these routing tables are listed in Table I. The

results of applying the algorithms to the other core

routing tables were similar.

Running Times: The running times for the brute

force and the greedy heuristics are described. All the

experiments were run on a 800 MHz PC and required

less than 1MB of memory. We first consider the running

time of the brute force heuristic. For the real routing

tables, there were less than 12,000 unique combinations

of the first 16 bits for the 16-24 bit prefixes. The running

time for the brute force algorithm was less than 16

seconds for selecting up to 10 hashing bits. To explore

the worst case running times for 1M prefixes, we

generated a synthetic table that has approximately 1

million prefixes with 216 unique combinations of the

first 16 bits. This table was constructed by randomly

picking the (non-zero) number of prefixes that share each

combination of the first 16 bits. In this case, the running

time can go as high as 80 seconds for selecting 8 hashing

bits. Looking at the numbers for the greedy heuristic, we

find that for real tables, it can run in as low as 0.05

seconds (up to 10 hashing bits) and takes about 0.22

seconds for the worst case synthetic input. This is an

order of magnitude faster than the brute force heuristic.

However, if the routing updates do not require frequent

reorganizations of the routing tables, the brute force

method might also suffice.

Quality of Splits: We now explore the nature of the splits

produced by each of the three heuristics. Let N denote

the number of 16-24 bit prefixes in the table, and cmax

denote the maximum bucket size. The ratio N/ cmax are a

measure of the quality (evenness) of the split produced

by the hashing bits. In particular, it is the factor of

reduction in the portion of the TCAM that needs to be

searched. Figure 3 & 4 shows a plot of N/ cmax versus the

number of hashing bits k. From the below figure,

Fig.3. Running times of the brute force and greedy algorithms.

Fig.4. Running times of the brute force and greedy algorithms.

The brute force algorithm performs an exhaustive search

to find the best bits to select, while the greedy algorithm

may find a suboptimal set of bits. ―full‖ is the synthetic

table, while rrc4 and oregon are real core routing tables.

ISSN (Print) : 2319-5940
ISSN (Online) : 2278-1021

 International Journal of Advanced Research in Computer and Communication Engineering

 Vol. 2, Issue 1, January 2013

Copyright to IJARCCE www.ijarcce.com 982

Fig 5. Power reduction factor (= size of entire prefix table/size of

largest bucket) plotted on a log scale, using the different algorithms.

 ―brute‖ uses the brute force method, ―greedy‖ uses the

greedy algorithm, while ―static‖ uses the last few

consecutive bits out of the first 16 bits of a prefix. We

see that the ratio N/Cmax for the brute force and greedy

schemes is nearly 53 at k = 6; for the static scheme this

ratio is around 49, while this ratio for the best possible

split (a completely even split) would be 2
k
 = 64. The

differences between the three bit selection heuristics

widens as more hashing bits are used. Since the synthetic

table was generated by selecting the number of prefixes

for each combination of the first 16 bits uniformly at

random, it is easier to find good hashing bits for it.

Hence all the three bit selection schemes provide splits

that are close to ideal for the synthetic table. In contrast,

real tables are less uniform than the synthetic table

yielding more uneven splits, and therefore, lower power

reduction ratios.

Laying out buckets on TCAM blocks: We now

consider the problem of laying out the buckets

(corresponding to a satisfying split) on the TCAM

blocks. First, the blocks containing the very long and

very short prefixes are placed in the TCAM at the

beginning and the end, respectively. This ensures that the

longest prefix is selected in the event of multiple

matches. We now focus on the buckets containing the

16-24 bit prefixes. Let the size of the largest bucket be

Cmax, and let the size of each TCAM block be s. ideally,

we would like at most [Cmax/s] blocks be too searched

when any address is looked up. However, it is possible to

show that for any TCAM with capacity N and block size

s, there exists a possible split of N prefixes into buckets

(of maximum size Cmax) such that every possible layout

scheme will have to lay out at least one bucket over

([Cmax/s+1]) TCAM blocks. Our scheme lays out the

buckets sequentially in any order in the TCAM, ensuring

that all the prefixes in one bucket are in contiguous

locations. It is possible to show that for this scheme, each

bucket of size c occupies no more than [c/s+1] TCAM

blocks. Consequently, at most [Cmax/s + 1] TCAM blocks

need to be searched during any lookup. Thus, our layout

scheme is optimal in the sense that it matches the lower

bound discussed in the previous paragraph. The actual

power savings ratio will be lower than the metric N/Cmax

plotted in Figure 5. This is because the bucket layout

scheme may round up the number of searched blocks and

the extra blocks containing the long and short prefixes

need to be searched for every lookup. For example,

consider the task of laying out a 512K-entry prefix table

into a 512K-entry TCAM with 64 8K blocks. Suppose

that the very short (< 16-bit) and very long (> 24-bit)

prefixes fit into 2 blocks, while the biggest bucket

contains 12K 16-24 bit prefixes. The metric N/cmax has

the value 512K/12K = 42.67. However, our layout

scheme guarantees that the maximum number of blocks

searched during a lookup would be (_12K/8K+1)+2 = 5,

which reduces power consumption by a factor of 64/5 =

12.8. For a TCAM with a maximum power rating of

15Watts, this results in a power budget of under 1.2

Watts, which is in the same ballpark as the SRAM based

ASIC designs [3].

V. Conclusion

The bit selection architecture provides a

straightforward technique for reducing the power

consumption of data TCAMs. In particular, the

additional hardware required for bit extraction and

hashing is a set of simple muxes and can be very cost

effective. However, the technique has some drawbacks.

First, the worst-case power consumption guaranteed by

this method is fairly high. In practice (i.e., for real

tables), we saw that our heuristics provide significantly

lower power consumption. For example, for a table with

N=1M prefixes, the worst-case analysis guarantees a

power reduction ratio N/Cmax = 2.62 using 3 hashing bits

(from Table I), while our experimental results indicate

power reduction ratios over 7.5 (from Figure 5).

However, for a hardware designer who allocates a power

budget, the worst-case power requirement is required to

provide a guaranteed-not-to-exceed power budget. Thus,

for the bit selection architecture, the designer would be

forced to design for much higher worst-case power

consumption than will ever be seen in practice. Second,

the method of bit-selection described here assumes that

the bulk of the prefixes lie in the 16-24 bit range2. This

assumption may not hold in the future. In particular, the

number of long (> 24-bit) prefixes may increase rapidly.

REFERENCES

[1] A. McAuley, and P. Francis, ―Fast Routing Table Lookup Using
CAMs,‖ Proc. IEEE Infocom, vol. 3, pp. 1382–1391, March/April

1993.
[2] V.C. Ravikumar, R. N. Mahapatra. ―TCAM Architecture for IP

Lookup Using Prefix Properties,‖ IEEE Micro, vol. 24, no. 2, pp. 60–

69, March/April 2004.

ISSN (Print) : 2319-5940
ISSN (Online) : 2278-1021

 International Journal of Advanced Research in Computer and Communication Engineering

 Vol. 2, Issue 1, January 2013

Copyright to IJARCCE www.ijarcce.com 983

[3] F. Zane, G. Narlikar, and A. Basu, ―CoolCAMs: Power-Efficient
TCAMs for Forwarding Engines,‖ Proc. IEEE Infocom, vol. 1, pp. 42–

52, March/April 2003.

[4] Mohammad J. Akhbarizadeh, Mehrdad Nourani, Deepak S.
Vijayasarathi, Poras T. Balsara. ―PCAM: A Ternary CAM

Optimized for Longest Prefix Matching Tasks,‖ Proc. 2004 IEEE Int’l

Conf. on Computer Design (ICCD'04), pp. 6–11, Oct. 2004.
[5] V.C. Ravikumar, R. N. Mahapatra, L. N. Bhuyan. ―EaseCAM: An

Energy and Storage Efficient TCAM-Based Router Architecture for IP
Lookup,‖ IEEE Transactions on Computers, vol. 54, no. 5, pp. 521–

533, May 2005.

[6] Anthony Gallo. Meeting Traffic Demands with Next-Generation
Internet Infrastructure. Lightwave, 18(5):118–123, May 2001.

Available at http://www.siliconaccess.com/news/Lightwave may

01.html.
7] G. Huston. Analyzing the Internet’s BGP Routing Table. The

Internet Protocol Journal, 4, 2001.

[8] IDT. http://www.idt.com/products/.
[9] M. Kobayashi, T. Murase, and A. Kuriyama. A Longest Prefix

Match Search Engine for Multi-Gigabit IP Processing. In Proceedings

of the International Conference on Communications (ICC 2000), pages
1360– 1364, New Orleans, LA, 2000.

[10] H. Liu. Routing Table Compaction in Ternary CAM. IEEE Micro,

22(1):58–64, January–February 2002.

[11] R. Mahajan, D. Wetherall, and T. Anderson. Understanding BGP
Misconfiguration. In Proceedings of SIGCOMM ’02, Pittsburgh, PA,

August 2002.

[12] A. J. McAuley and P. Francis. Fast Routing Table Lookup Using
CAMs. In Proceedings of Infocom ’93, pages 1382–1391, San

Francisco, CA, March 1993.

[13] Netlogic Microsystems http://www.netlogicmicro.com.
[14] D. Shah and P. Gupta. Fast Updating Algorithms for TCAMs.

IEEE Micro, 21(1):36–47, January–February 2001.
[15] V. Srinivasan and G. Varghese. Fast Address Lookups Using

Controlled Prefix Expansion. ACM Transactions on Computer Systems,

17(1):1–40, February 1999.

K.Suresh Kumar is an Assistant Professor in SSJ

Engineering college, Hyderabad. He received his

B.Tech degree in ECE from CVR Engineering college,

JNTUH. M.E degree in VLSI Design from PSNA

college of engineering & technology, ANNA University,

Trichy. He was a research scholar in Electronics &

Communication Engineering department, JNTUH. He

has more than 4 years of experience in teaching. His

current research interest includes in Low-power VLSI

design.

http://www.netlogicmicro.com/

